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Weighted average �ux method and �ux limiters
for the numerical simulation of shock waves

in rigid porous media
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SUMMARY

The one-dimensional �ow �eld generated by the passage of a shock wave in a rigid, thermoelastic porous
foam has been simulated using a two-phase mathematical model. The work presented here makes use of
the weighted average �ux method to solve the system of six equations that govern the problem. Spurious
oscillations are eliminated through the application of total variation diminishing limiting methods. Four
di�erent limiters were tested: van Leer, SuperA, MinA and van Albada. Numerical tests were carried
out to verify the performance of each �ux limiter in terms of accuracy. The results were compared to
analytical and previously obtained data to assess the performance of the mathematical model. Excellent
agreement was obtained. Copyright ? 2002 John Wiley & Sons, Ltd.
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INTRODUCTION

Many experimental and theoretical studies have been carried out in the �eld of wave prop-
agation in porous media. One of the earliest was performed by Biot [1], who looked at
formulating microscopic representations of compressive wave propagation utilizing the theory
of mixtures. Many other studies have followed in the wake of Biots’ initial work, the major-
ity of which tended to concentrate on the propagation of weak acoustic waves. However, of
primary interest in this research is the propagation of non-linear waves, such as shock waves,
in porous media.
Early work in this �eld was carried out by Rogg et al. [2], who examined the e�ect of a

porous medium on shock. This was achieved by using experimental shock tube simulation and
by solving balance equations for the solid and �uid phases, introducing empirical drag laws
for high Reynolds number �ows developed by Ergun [3]. The porous medium used in this
experimental work consisted of a packed bed of glass beads. This was consistent with the laws
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developed by Ergun, but did not provide scope for shock propagation in more generalized
porous media.
The foundations of such a method were laid out by Sorek et al. [4], in which macroscopic

balance equations for mass, momentum and energy are formulated for the �uid and solid
phases. This is achieved by treating the porous medium as a continuum, and applying the
multiphase approach. Macroscopic balance equations were obtained by averaging the micro-
scopic balance equations over a representative elementary volume (REV), as described by
Bear and Bachmat [5].
This idea was advanced further by Levy et al. [6], by performing a dimensional analysis on

the resulting macroscopic balance equation developed by Sorek et al. [4] and Bear et al. [7].
This established a theoretical basis on which to model non-linear wave motion in a deformable
porous media represented by a continuum of interacting solid and �uid phases. This theoretical
model was used as a basis to formulate the set of governing equations for a rigid porous
medium. A numerical solution for this problem was proposed and implemented by Levy
et al. [8] and Ben-Dor et al. [9]. The numerical results were validated using experimental
results obtained in a previous experimental study carried out by Levy et al. [10].
Levy et al. [8] describe a numerical solution of a one-dimensional inviscid model for

compaction wave propagation in a rigid porous medium. The accuracy of the solution was
improved using the TVD method of Harten [11]. The work presented in this paper makes
use of the weighted average �ux (WAF) method of Toro [12] to circumvent the �rst-order
accuracy restriction placed on monotone numerical methods. There were two reasons why this
technique was chosen instead of the method of Levy et al. [8]. Firstly, the implementation of
the WAF method was thought to be straightforward, and to easily lead itself to the application
of a number of TVD �ux limiter functions. Secondly, to the best of the authors’ knowledge,
the WAF method has not been applied to this problem before.

GOVERNING EQUATIONS

The formulation of the three-dimensional macroscopic balance equations for mass, momentum
and energy is shown in Levy et al. [8], and is based on averaging of the conserved quantities
in the microscopic balance over a REV. For the purposes of the two-phase modelling, the
REV is treated as a continuum whose porosity is given by

�=1− �bulk
�S

(1)

where �bulk is the bulk density of the porous medium and �s is the density of the skeletal
solid.
The following assumptions are used in the formulation of the model:

• The �uid is inviscid.
• Di�usive �uxes may be neglected as advective �uxes are much larger.
• There is no coupling between the �uid mass and the solid mass phases.
• The solid matrix may only deform by small amounts.
• The solid matrix is thermoelastic.
• The material from which the solid is made is incompressible.
• The process is adiabatic.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1187–1207
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The one-dimensional form of the macroscopic balance equations, along with the constitutive
relationships for stress and strain in the solid matrix and the behaviour of the gas, are given
in the form:
Mass:

@��f
@t

+
@��fuf
@x

=0 (2)

@(1− �)�s
@t

+
@(1− �)�sus

@x
=0 (3)

where un and �n are the velocity and density in the nth phase, where n may be s or f which
refer to the solid and the �uid phases, respectively.
Momentum:

@��fuf
@t

+
@��fu2f
@x

=−CT @�P@x + CTP
@�
@x

− CF��f |uf − us|(uf − us) (4)

@(1− �)�sus
@t

+
@(1− �)�su2s

@x
=−CT @(1− �)P@x

+
@�′s
@x

− CTP @�@x

+CF��f |uf − us|(uf − us) (5)

where P is the pressure, CT is the tortuosity constant describing the directional cosines of the
�uid path through the porous medium, and CF is the Forchheimer constant.
Energy:

@��f (cfTf + 1
2u
2
f )

@t
+
@��fuf (cfTf + 1

2u
2
f )

@x

=−CT @�ufP@x
+ CTP

@�
@x

− CF��f |uf − us|(uf − us)us (6)

@(1− �)�s(csTs + 1
2u
2
s )

@t
+
@(1− �)�sus(csTs + 1

2u
2
s )

@x

=−CT @(1− �)usP@x
+
@us�′s
@x

− CTP@�@x + CF��f |uf − us|(uf − us)us (7)

where Tn and cn are the temperature and speci�c heat capacity at constant volume in the nth
phase.
The e�ective stress in the solid matrix may be expressed in the following form:

�′s =E��− ETcs(Ts − Ts0) (8)
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Figure 1. Initial conditions for simulation.

where E� and ET are the Lam�e constants for the solid matrix, Ts0 is its initial temperature
and �, the macroscopic strain as a function of porosity, is de�ned by

�=1− rs
rs0

where rs0 is the initial mass fraction of the solid.
Finally, the second constitutive law—the equation of state for the �uid—is written in the

form

P=�fRTf (9)

where R is the gas constant for air.

SOLUTION STRATEGY

When the gradient of porosity is small, Equations (2)–(7) form a coupled, hyperbolic system
of equations that may be used to describe the �uid �ow in the porous media following an
abrupt change in �ow variables (i.e. a shock wave). The familiar shock tube problem was
used as the initial value problem. Figure 1 shows a schematic of a shock tube with initial
conditions de�ned either side of the diaphragm.
The shock tube problem is a speci�c case of the more general Riemann problem, which

describes discontinuities in initial data applied to hyperbolic equations. Toro [12] gives an
excellent account of many of the methods that have been developed to solve this problem.
The method of Roe is used in this work to solve the Riemann problem, to calculate the
intercellular �uxes and jumps that are needed to update the solution. Roe’s method makes
use of an explicit formulation of the eigenvalues, right eigenvectors and wave strengths of
the Jacobian matrix of the system of governing equations. In order to �nd these values, it is
necessary to reformulate Equations (2)–(7) in the form:

Ut + [F(U)]x=Q (10)

Levy et al. [8] describe the conserved variables using the following de�nitions:

rf =��f ; mf = rfuf ; Ef = rf (cfTf + 1
2u
2
f )

rs = (1− �)�s; ms = rsus; Es = rs(csTs + 1
2u
2
s )

This allows the conserved variables, �uxes and sources, to be written in the form:
Conserved variable vector:

U=[rf ; rs; mf ; ms; Ef ; Es]T (11)
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Flux vector:

F=




mf
ms

m2f
rf
+ CT�P

m2s
rs

− �′s + (1− CT�)P
mf
rf
(Ef + CT�P)

ms
rs
(Es − �′s + (1− CT�)P)




(12)

Source vector:

Q=




0

0

CTP
@�
@x

− CFrf
∣∣∣∣mfrf − ms

rs

∣∣∣∣
(
mf
rf

− ms
rs

)

−CTP@�@x + CFrf
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rs
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(
mf
rf

− ms
rs

)

ms
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(
CTP
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− CFrf
∣∣∣∣mfrf − ms
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(
mf
rf

− ms
rs

))

ms
rs

(
−CTP@�@x + CFrf

∣∣∣∣mfrf − ms
rs

∣∣∣∣
(
mf
rf

− ms
rs

))




(13)

The Jacobian matrix A(U)= @F(U)=@U was formed using Mathematica. From this, the six
eigenvalues, right eigenvectors and wave strengths may be found symbolically. These are
shown in Appendix A.
The eigenvectors are all real and distinct, hence the problem posed by (10) is strictly

hyperbolic. Each eigenvector=eigenvalue=wave strength combination may be associated with
a wave, as shown in Figure 2. This provides a means by which the �ux jumps across the
waves may be directly approximated using Roe’s method

�F=FR − FL=
6∑
k=1
�̃k �̃kR̃(k) (15)

where �̃k , �̃l and R̃(k) are the Roe averaged wave strength, eigenvalue and eigenvector associ-
ated with the kth wave. The Harten–Hyman entropy �x [12] was applied during the calculation
of the Roe averaged �ux jumps. The formulation of the Roe averaged quantities is given in
Appendix A.
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4

5

6

Figure 2. Wave structure.

NUMERICAL METHOD

A fully explicit discrete formulation of (10) was used to time step the initial value problem,
in the form

Un+1i =Uni +
�t
�x
(Fni−1=2 − Fni+1=2) + �tQi (16)

The intercellular �uxes are calculated by solving the local Riemann problem between nodes i
and i+1. Once found, they may be used to update the solution at time n+1 using Equation
(16). The WAF method was used to calculate the Riemann �uxes. The WAF is de�ned in
integral form by Toro [12] as

Fi+1=2 =
∫ �x=2

−�x=2
F
(
Ui+1=2

(
x;
�t
2

))
dx (17)

Using the known information about the wave structure shown in Figure 2, and making use of
the wave jump values found using Equation (15), Equation (17) may be written in the form

Fi+1=2 =
1
2
(Fi + Fi+1)− 1

2
∑
sgn(ck)�ki+1=2�F

(k)
i+1=2 (18)

where ck is the wave Courant number, �ki+1=2 is the WAF limiter function and the function
sgn() is equal to one or minus one, depending on the sign of ck . Flux (18) is used in Equation
(16) to update the solution to the next time level.

TVD FLUX LIMITER FUNCTIONS

The �ux limiter function, �ki+1=2, shown in Equation (18), was used to apply a TVD condition
to the �ux. Separate limiters are calculated for the �ux jumps across each wave. Table I
details the �ux limiter functions used to apply the TVD condition. In each case, the limiters
are functions of r, which is the ratio of local to upwind solid energy jumps across the
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Table I. Flux limiters.

First order �(r)= 1

van Leer �(r)=

{
1 if r60

1− (1− |c|)2r
1 + r

if r¿0

SuperA �(r)=




1 if r60

1− 2(1− |c|)r if 06r6 1
2

|c| if 1
26r61

1− (1− |c|)r if 16r62
2|c| − 1 if r¿2

MinA �(r)=



1 if r60
1− (1− |c|)r if 06r61
|c| if r¿1

van Albada �(r)=



1 if r60

1− (1− |c|)r(1 + r)
(1 + r)2

if r¿0

respective wave

rk =
Ek+1s − Eks |i−1=2
Ek+1s − Eks |i+1=2

(19)

The solid energy was chosen for two reasons: �rstly, it changes across all waves on the solu-
tion x–t domain and, secondly, because the results obtained during the simulations appeared
smoother without loss of accuracy. For obvious reasons, �uid-only simulations require a �uid
parameter to be used in the calculation of r. The �uid mass was used in this case.
The �rst limiter shown in Table I results in a �rst-order accurate �ux. The van Leer,

SuperA, van Albada and MinA functions limit the amount of downwinding utilized by the
WAF method. This aims to eliminate the smearing of wave fronts associated with the �rst-
order method, and to prevent the spurious oscillations associated with centred second-order
methods (i.e. Lax Wendro�).

NUMERICAL TESTS

Two numerical tests were performed. The �rst tested the performance of the �ux limiters in
Table I for the shock tube problem in a single-phase �uid medium. The second tested the
limiters performance for the two-phase homogeneous rigid porous foam. Figure 3 shows the
initial conditions used in both tests.
The simulation of the porous medium requires the de�nition of several material constants

(two of which are shown in Figure 3: porosity and speci�c heat capacity). These are the
Forchheimer and tortuosity constants, the Lam�e coe�cients and the density of the skeletal
material. Table II shows the values used, which were based on a rigid porous foam called
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(a)

(b)

Figure 3. Initial conditions for numerical tests: (a) single-phase �uid only—air;
(b) two-phase �ow—air saturated porous medium.

Table II. Porous medium material constants.

Forchheimer CF 300 l s−1

Tortuosity CT 0.7
Lam�e E� 380× 107 Pa

ET 26:207 kgm−3

Density �s 2000 kgm−3

Sivex (manufactured by Pyrotek, Switzerland). The values of the material constants were
taken from Levy et al. [8, 9].
The time step, �t, was calculated at each time level using a Courant number of 0.9, as

follows:

�t=
0:9�x
SMAX

(20)

where SMAX is the maximum wave speed at each time step. The application of this condition
ensured that the time step was su�ciently small for the numerical method to remain stable.
The computer code was written in Fortran 90 and executed on a Pentium PC. The spatial

domain was 1:6 m in length. The convergence of the numerical methods was veri�ed by
running tests for 100, 200 and 500 grid points. All runs took less than one minute of CPU
time.

RESULTS

Test 1: �uid medium

The density variation 1ms after diaphragm burst is shown in Figures 4(a) (100 nodes), 4(b)
(200 nodes) and 4(c) (500 nodes). The choice of density as the displayed �uid variable was
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Figure 4. (a) Density plots for 100 node �uid only solution; (b) density plots for 200 node �uid only
solution; (c) density plots for 500 node �uid only solution.

based on the fact that it changes across all waves in the solution �eld. The advantage of this
is that the e�ects of the WAF �ux limiters could be observed across all wave fronts. The
plots compare the results of the WAF method using Roe’s �rst-order �ux and each of the
four TVD �ux limiters, against an analytical solution. The most important factors taken into
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Figure 4. (Continued).

consideration are the resolution of the numerical solution compared to the exact solution, and
the convergence of the numerical methods applied.
The van Leer, SuperA and MinA �ux limiters exhibit de�nite advantages over Roe’s �rst-

order method. It may be seen that, with the exception of the van Albada limiter, the plots
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Figure 4. (Continued).

in Figure 4(a)–(c) show that shock and contact waves su�er less from numerical smearing
with the TVD �ux limiters than with Roe’s �rst-order method, when compared to the exact
solution.
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Figure 5. Pressure distribution for �uid only problem.

Figure 6. Velocity distribution for �uid only problem.

Figures 5 and 6 show the pressure and velocity distributions in the shock tube after 1 ms
for both the van Leer and SuperA �ux limiters, using 500 computation nodes. The results
compare favourably with the exact solutions in terms of resolution of the shock front. The
e�ect of increasing the number of grid points was, in all cases, to improve the accuracy of
the solution.

Test 2: porous medium

The solutions presented for the second set of numerical tests are shown in Figures 7 and 8,
at a time 260 �s after diaphragm burst. The speed of sound in the solid matrix is much
higher than in the �uid. As a result of this, it was necessary to use a small solution end time
to obtain meaningful results. Due to the complexity of this problem, no exact solution was
available for comparison.
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Figure 7. Fluid velocity plots for 200 node porous medium solution.

The �uid velocity plots shown in Figure 7 compare the solutions obtained using the TVD
�ux limiters and the Roe �rst-order method. There exists a considerable discrepancy be-
tween the results of the �rst- and second-order methods, due to numerical di�usion. The
maximum velocity shown on the second-order distributions is approximately 12% higher
in each case.
The results shown in Figure 8 are for the normal stress �eld in the porous medium. The

di�erence between the TVD �ux limiter and the Roe �rst-order solutions was marginal. The
SuperA limiter seemed to o�er a small improvement in sharpness, which was not observed
for the other three limiters.
Figure 9 shows a comparison between SuperA and van Leer �ux limiters for the porosity

and pressure distributions in the porous medium. The distributions are virtually identical in
each case.
The results obtained were compared with those shown in Ben-Dor et al. [9], which were

obtained using the same initial conditions, material parameters and end time. Comparisons
were drawn between the general curve pro�le, the height of the curve at its maxima and
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Figure 8. Normal stress plots for 200 node porous medium solution.

the width of curve at its base. All the curve pro�les in Figure 7 are similar to the re-
sult in Ben-Dor et al. [9]. The deviation of the maximum velocity is only 1–2% in the
worst case. The main di�erence lies in the width of the curve base. This was assessed
by �nding the ratio of the base width to the domain length, for each velocity distribution.
Table III shows that the SuperA limiter o�ers the best performance, compared to that of
Ben-Dor et al. [9].

CONCLUSIONS

The shock tube problem has been successfully simulated using the WAF method for
one- and two-phase �ow regimes. The application of TVD �ux limiters to improve the
accuracy of the numerical method was successful. This improvement manifested itself
in terms of better resolution around discontinuities and a lessening of the e�ects of
numerical di�usion associated with the �rst-order Roe method (see di�erence in maximum
values in Figure 7). The SuperA limiter o�ered the best performance in terms of improving
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Figure 9. Porosity (a) and pressure (b) distributions for porous medium
problem—van Leer and SuperA only.

Table III. Curve base ratio.

Ben-Dor et al. [9] 7.75
SuperA 7.61
van Leer 7.38
MinA 6.88
van Albada 6.0

the resolution around the discontinuities, closely followed by the van Leer and MinA
limiters.
The present simulation of a shock wave in a porous medium was entirely theoretical.

Direct experimental validation of the results was not possible, due to the impracticalities of
implementing a bursting mechanism inside the porous medium. Further work will utilize the
numerical techniques developed here to model the interaction of a shock wave with a thin layer
of porous material mounted in a shock tube. This will allow the results to be experimentally
validated.

APPENDIX A

The system of governing Equations (2)–(7) may be written in the form

Ut +A(U)Ux=Q (A1)

where the Jacobian is given by

A(U)=
@F(U)
@U

(A2)
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The 6× 6 Jacobian may be found symbolically using the software Mathematica, and is
given by

A=




a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66




(A3)

The de�nitions of aij, where i and j range from one to six, are given below:
First row:

a11 = 0; a12 = 0; a13 = 1; a14 = 0; a15 = 0; a16 = 0 (A3a)

Second row:

a21 = 0; a22 = 0; a23 = 0; a24 = 1; a25 = 0; a26 = 0 (A3b)

Third row:
a31 = 1

2V
2
f (T

∗(�− 1)− 2); a32 = 0; a33 =Vf (2 + T ∗(1− �)); a34 = 0

a35 =T ∗(�− 1); a36 = 0 (A3c)

Fourth row:

a41 = −V
2
f (�− 1)(T ∗rs − (T ∗ − 1)�s)

2(rs − �s)

a42 =
E�
rs0

− V 2s +
ET(rsV 2s − Es)

r2s
− T ∗(2Ef − rfV 2f )(�− 1)

2(rs − �s)

+
(2Ef − rfV 2f )(�− 1)(T ∗rs − (T ∗ − 1)�s)

2(rs − �s)2

a43 =
Vf (�− 1)(T ∗rs − (T ∗ − 1)�s)

rs − �s ; a44 =
(
2− ET

rs

)
Vs

a45 = − (�− 1)(T
∗rs − (T ∗ − 1)�s)
rs − �s ; a46 =

ET
rs

(A3d)

Fifth row:

a51 =
Vf (rfT ∗V 2f (�− 1) + Ef (T ∗(1− �)− 1))

rf
; a52 = 0

a53 =
2Ef (1 + T ∗(�− 1))− 3rfT ∗V 2f (�− 1)

2rf
; a54 = 0

a55 = Vf (1 + T ∗(�− 1)); a56 = 0

(A3e)
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Sixth row:

a61 = −V
2
f Vs(�− 1)(T ∗rs − (T ∗ − 1)�s)

2(rs − �s)

a62 = Vs

(
E�
rs0
+
ET(rsV 2s − Es)

r2s
− T ∗(2Ef − rfV 2f )(�− 1)

2(rs − �s)

+
(2Ef − rfV 2f )(�− 1)(T ∗rs − (T ∗ − 1)�s)

2(rs − �s)2

− (2Ef − rfV
2
f )(�− 1)(rsT ∗ − (T ∗ − 1)�s)

2rs(rs − �s)

+
Es + E�(rs − rs0)=r + ET(m2s0=2r2s0 − Es0=rs0 + Es=rs + V 2s =2)

rs

)

a63 =
VsVf (�− 1)(T ∗rs − (T ∗ − 1)�s)

rs − �s

a64 =
Es + E�(rs − rs0)=rs0 − ETV 2s + ET(m2s0=2r2s0 − Es0=rs0 + Es=rs + V 2s =2)

rs

− (2Ef − rfV
2
f )(�− 1)(rsT ∗ − (T ∗ − 1)�s)

2rs(rs − �s)

a65 = −Vs(�− 1)(T
∗rs − (T ∗ − 1)�s)
rs − �s ; a66 =

Vs(ET + rs)
rs

(A3f)

The eigenvalues, also evaluated using Mathematica, are of the form:

�1 =Vs − as; �2 =Vf − af ; �3 =Vs

�4 =Vf ; �5 =Vf + af ; �6 =Vs + as
(A4)

where the speed of sound in the �uid, af , is given by

af =
�P(1− T ∗ + �T )T ∗

rf
(A5)

and the speed of sound in the solid, as, is given by

as =

√
E�
rs0
+

(
�s

�s − rs +
ET(�s(1− T ∗) + T ∗rs)

r2s

)
�P

(�s − rs) −
ET�′s
r2s

(A6)

Eigenvalues (A4) obtained using Mathematica were veri�ed against those obtained by Levy
et al. [8]. However, the task of reproducing the eigenvectors using Mathematica was not as
straightforward as for the eigenvalues. Although expressions were successfully computed using
Mathematica, they were extremely long and complex, and could not be explicitly reconciled
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with the eigenvectors of Levy et al. [8]. Because of the length of the computed expressions,
it was decided to use the more compact forms of Levy et al. [8] without explicit veri�cation.
This decision was justi�ed by the correct results of the numerical simulations.
The eigenvectors presented by Levy et al. [8] are shown below

K (1) =




0
1
0

Vs − as
0

Hs − Vsas



; K (2) =




1

−a
2
f (�s − (�s − rs)T ∗)
(a2s − �21)(�s − rs)T ∗

Vf − af
a2f (�s − (�s − rs)T ∗)(�1 − Vs)

(a2s − �21)(�s − rs)T ∗

Hf − Vfaf
a2f (�s − (�s − rs)T ∗)(�1Vs −Hs)

(a2s − �21)(�s − rs)T ∗




K (3) =




0
1
0
Vs
0

Hs − rsa2s
ET



; K (4) =




1
0
Vf
0

V 2f
0




K (5) =




1

−a
2
f (�s − (�s − rs)T ∗)
(a2s − �22)(�s − rs)T ∗

Vf + af

−a
2
f (�s − (�s − rs)T ∗)(�2 + Vs)
(a2s − �22)(�s − rs)T ∗

Hf + Vfaf

−a
2
f (�s − (�s − rs)T ∗)(�2Vs +Hs)

(a2s − �22)(�s − rs)T ∗




; K (6) =




0
1
0

Vs + as
0

Hs + Vsas




(A7)

where the enthalpy of the �uid, Hf , is given by

Hf =
Ef + T ∗�P

rf
(A8)
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and the enthalpy of the solid, Hs, is given by

Hs =
Es
rs

− �′s
rs
+
(1− �T ∗)P

rs
(A9)

The variables �1 and �2 are de�ned by

�1 = af − Vf + Vs and �2 = af + Vf − Vs (A10)

The number of equations in the system corresponds to the number of waves in the solution.
For a linear system of equations, the eigenvalues describe the propagation speed of the waves
in the solution, while the eigenvectors relate to the jumps in the conserved variables and �uxes
across each wave. However, system (A1) is not linear. Roe’s method allows the calculation
of �ux jumps across the waves in the solution domain, by converting a non-linear system into
a quasi-linear system, which approximates the real solution. The process is referred to as Roe
linearisation. The system characteristic curves may be plotted on an x–t diagram. Since there
are six equations, there are six characteristics. This is illustrated in Figure 2.
The �rst, third and last characteristics may be related to the waves propagating in the solid

matrix. The second, fourth and �fth may be related to the waves propagating in the �uid
saturating the void space. The �rst and second waves are equivalent to rarefaction waves, the
third and fourth are equivalent to contact waves and the �nal two waves, �ve and six, are
equivalent to shocks.
The Roe Riemann solver mentioned in the above section was applied to facilitate the

calculation of the �ux jumps across the waves. Roe’s method relies on the introduction of
a parameter vector to convert a non-linear system into a linear system. For the six equation
system (A1), this vector takes the form

Q=




q1
q2
q3
q4
q5
q6



=
U√
rf
=

1√
rf




rf
rs
mf
ms
Ef
Es




(A11)

The arithmetic mean of Q across the left and right known states (UL and UR) is then
introduced into the Jacobian matrix. The resulting matrix is expressed in terms of Roe averaged
variables. These are calculated based on the following equation:

ũ=
q1LxL + q1RxR
q1L + q1R

=
√
rf LxL +

√
rf RxR√

rf L +
√
rf R

(A12)

where xL and xR are known left- and right-state �ow variables. This results in system (A1)
being recast in the form

Ut + ÃUx=Q (A13)

where Ã is the Roe averaged Jacobian matrix, which takes the same form as matrix (A3).
The Roe averaged eigenvalue, eigenvectors and wave strengths may be written in terms of
the Roe averaged quantities, based on Equation (A12).
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Levy et al. [8] presented the Roe averaged wave strengths, which have been validated using
Mathematica. The resulting values of �̃j, for values of j from one to six (one for each wave
in the solution), are shown below

�̃1 =
C3 − C4
2

+
(�s − (�s − r̃s)T ∗)ã2f ((ãs + Ṽf − Ṽs)C1 + ãfC2)

2(�s − r̃f )T ∗ãs(ãs − �̃1)(ãs + �̃2)
(A14a)

�̃2 =
(C1 − C2)

2
(A14b)

�̃3 =�rs − C3 (A14c)

�̃4 =�rf − C1 (A14d)

�̃4 =
(C1 + C2)

2
(A14e)

�̃1 =
C3 + C4
2

+
(�s − (�s − r̃s)T ∗)ã2f ((ãs − Ṽf + Ṽs)C1 + ãfC2)

2(�s − r̃f )T ∗ãs(ãs + �̃1)(ãs − �̃2)
(A14f)

where the Cn are described by

C1 =
(�− 1)T ∗(�Ef + 1

2 Ṽ
2
f �rf − Ṽf�mf )

ã2f
(A15a)

C2 =
�mf − Ṽf�rf

ãf
(A15b)

C3 =
ET(�Es + (Ṽ

2
s − H̃ s + r̃sã

2
s =ET)�rs − Ṽs�ms)

r̃sã
2
s

(A15c)

C4 =
�ms − Ṽs�rs

ãs
(A15d)
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